The molecular architecture of dihydropyrindine receptor/L-type Ca2+ channel complex

نویسندگان

  • Hongli Hu
  • Zhao Wang
  • Risheng Wei
  • Guizhen Fan
  • Qiongling Wang
  • Kaiming Zhang
  • Chang-Cheng Yin
چکیده

Dihydropyridine receptor (DHPR), an L-type Ca(2+) channel complex, plays an essential role in muscle contraction, secretion, integration of synaptic input in neurons and synaptic transmission. The molecular architecture of DHPR complex remains elusive. Here we present a 15-Å resolution cryo-electron microscopy structure of the skeletal DHPR/L-type Ca(2+) channel complex. The DHPR has an asymmetrical main body joined by a hook-like extension. The main body is composed of a "trapezoid" and a "tetrahedroid". Homologous crystal structure docking and site-specific antibody labelling revealed that the α1 and α2 subunits are located in the "trapezoid" and the β subunit is located in the "tetrahedroid". This structure revealed the molecular architecture of a eukaryotic Ca(2+) channel complex. Furthermore, this structure provides structural insights into the key elements of DHPR involved in physical coupling with the RyR/Ca(2+) release channel and shed light onto the mechanism of excitation-contraction coupling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between cannabinoid receptors and inhibition of L-type calcium channel on passive avoidance learning and memory in male rats

Introduction: There is currently a debate over the interaction between Ca2+ channels and cannabinoid system on learning and memory processing. In this study, we examined the effect of acute injection of cannabinoid agonist (Win- 55212-2) (Win) or antagonist (AM251), following chronic injection of verapamil, as a L-type Ca2+ channels blocker, on passive avoidance (PA) test in male Wistar rats...

متن کامل

Differential mechanisms of Ca2+ responses in glial cells evoked by exogenous and endogenous glutamate in rat hippocampus.

The mechanisms of Ca2+ responses evoked in hippocampal glial cells in situ, by local application of glutamate and by synaptic activation, were studied in slices from juvenile rats using the membrane permeant fluorescent Ca2+ indicator fluo-3AM and confocal microscopy. Ca2+ responses induced by local application of glutamate were unaffected by the sodium channel blocker tetrodotoxin and were the...

متن کامل

Gestational hypothyroidism-induced changes in L-type calcium channels of rat aorta smooth muscle and their impact on the responses to vasoconstrictors

Objective(s): Thyroid hormones play an essential role in fetal growth and maternal hypo-thyroidism which leads to cardiovascular deficiency in their offspring.  Considering this, we intended to investigate the impact of gestational hypothyroidism on offspring vascular contractibility and possible underlying mechanisms. Materials and Methods: Hypothyroidism was induced in female rats by administ...

متن کامل

Modulation of ryanodine receptor Ca2+ channels (Review).

Ryanodine-sensitive Ca2+ release channels (ryanodine receptors, RyRs) play a crucial role in the mobilization of Ca2+ from the sarcoplasmic reticulum (SR) during the excitation-contraction coupling of muscle cells. In skeletal muscle, depolarization of transverse tubules activates the RyR, whereas in cardiac muscle, a Ca2+ influx through an L-type Ca2+ channel activates the RyR. The RyR is also...

متن کامل

Sigma-1 Receptor Plays a Negative Modulation on N-type Calcium Channel

The sigma-1 receptor is a 223 amino acids molecular chaperone with a single transmembrane domain. It is resident to eukaryotic mitochondrial-associated endoplasmic reticulum and plasma membranes. By chaperone-mediated interactions with ion channels, G-protein coupled receptors and cell-signaling molecules, the sigma-1 receptor performs broad physiological and pharmacological functions. Despite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015